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A set of two coupled nonlinear Schtimger equations is systematically analyzed by means of Lie group
technique. The physical situations under consideration include nonlinear propagation in strongly birefringent
and multimode optical fibers. The most general Lie group of point symmetries, its Lie algebra, and a group of
adjoint representations that correspond to the Lie algebra are identified. As a result, a complete list of group-
invariant exact solutions is obtained and compared with earlier results. The corresponding laws of conservation
are derived employing Noether’s theoref81063-651X98)10501-9

PACS numbsgs): 03.40.Kf, 02.20.Qs, 03.65.Ge, 42.81.Gs

I. INTRODUCTION As it is well known, forh=1 and v=1 Egs. (1) are
A_set of coupled nonlinear Schuinger equations eS8 2% TEAS TR A R TR
(CNSEs is a basic mathematical model in different branches Y,

of physics. Very often, CNSEs appear in nonlinear fiber op—thIS integrable case by the Hirota methkkb]. For v=—1

tics [1,2], where their different versions describe nonlinearf'fmc.i a ’I,ar‘g‘:]e erlough_cross-phase modula(bﬁ_M) (h>1)
pulse propagation in, e.g., multimode optical fibg8% bire- bright .( d_ark ) s_olltons and _the_ correspondmg_more gen-
fringent fibers[4,5] éouplérs[6—8] four-wave mixing[9— eral periodic solutions can exist in the region with positive

; (negative GVD [16,17,11. The physical effect responsible
ii]’tﬁgdcﬁggglicftﬁmgz’133' The present study focuses for such possibility is the CPM. Such periodic waves and

solitons are called symbiotid7,11]. For arbitrary values of

h and v, however, these equations are no longer integrable

[18]. Numerical studies of Eqg1l) have been reviewed in

[1,2]. A systematic investigation of exact solutions of Egs.
(1) (1) for =1 has been performed by the similarity method in
[19,20.

At the same time, it is well known that Lie group analysis
is one of the feasible ways of providing a possibility for
various exact solutions or classes of exact solutions to be
. . . specified. The crucial idea of the Lie group method is based
They describe a propagauon ) two'wavgs at different on the natural symmetries possessed by any system of partial
carrier wavelengths in two-mode optical fibets<(2) [3] differential equations. Using a well-known procedure
and(b) two modes in fibers with strong birefringende<t%)  [21,27, a certain number of reduced ordinary differential
[2]. In both casex andt denote the normalized distance and equations can be obtained. Their solutions constitute an op-
time. A andB are normalized slowly varying amplitudes of timal set of group-invariant solutions. This means that a spe-
waves with a different carrier wavelength, or the polarizationcial kind of group classification of one sort of solutions to the
components of the wave. Note that in order to get Efjsin  original system of partial differential equations can be made.
the case of strong birefringence, an additional change of deFhe Lie group method was successfully used to produce ex-
pendent variables has been ma@g after which the terms  act solutions for the higher-order Sédinger equatior23]
that describe the effect of separatiomalk-off effect [2])  as well as for a pair of linearly coupled CNSE34].

1

At 5

Aq+ (|A]?+h|B|?)A=0,

14

iB,+ 5

By+(|B|2+h|A|?)B=0.

between the two polarization components disappearl The purpose of this paper is to present a Lie group-
(v=—1) describes the propagation in the region of negativelassification of one-parameter group-invariant solutions of
(positive group-velocity dispersioGVD). Egs.(1). The classification obtained and the exact solutions

for v=1 are compared with earlier results[@B]. Note how-
ever, that in addition t¢19], we study the propagation of
*Permanent address: Institute of Electronics, Bulgaria Academywo waves in different GVD regions, i.ey=—1. This
of Sciences, boulevard Tsarigradsko Shosse 72, Sofia 1784, Butnakes an analysis of the symbiotic periodic wa({®BPWsg
garia. and solitons possible.
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In Sec. Il we briefly describe the method and simulta-A sum must be taken over the duplicate indices. The coeffi-
neously present our main results obtained from its applicaf:ientsgik and gikj depend on the functiong (x, ), 7(x, )
tion: (i) the most general Lie group of point symmetries andand their derivativef21,22. For the groupG the systen(3)
its Lie algebra andii) the group of adjoint representations of is the so-called defining system of equations. Its full set of
the Lie algebra. solutions constitutes a Lie algebra that generates the widest

In Sec. Ill we proceed with the Lie group classification permissible local group of continuous point transformations
giving the optimal system of one-dimensional subalgebrasor the system of differential equations under consideration.
and the corresponding optimal set of reduced systems. There Since all the variablesy(, =, %), 7)) are independent,
are six reduced systentsases A and Bconsisting of first-  the defining system is over-determined, which facilitates the
order differential equations that are readily integrated intosolution. However, the great number of 135 equations re-
uniform wavetraingcase A and vanishing waves with non- quires an essential use of a certain language for machine
trivial simultaneous dependence of phasetaand x (case  computing. By utilizing the package of the computer system
B). The rest of the systems are of second order. Differenfor symbolic calculationsIATHEMATICA [25], we have writ-
periodic(and in particular cases solitpeolutions, including  ten several specific programming modules for solving some
the symbiotic ones for=—1, are obtained. distinctive types of linear partial differential equations with

In Sec. IV we use Noether’s theorem to obtain conservaconstant coefficients. Without having been done any prior
tion laws associated with the Hamiltonian symmetries ofassignments tt, by rerunning the modules repeatedly, we
Egs. (1). In Sec. V we discuss the invariant solutions ob-optained the solution to E@3): a six-dimensional Lie alge-
tained. A comparison is also made with the solutions forbra with the basis of generators
v=1 published in[19,20. The full forms of the solutions

that compose the families of conjugate solutions are given in 9 9 9 9
Appendix A. Appendix B illustrates how the exact solutions Xl:ﬁ’ X2=5, X3=a—, X4=(9—,
found in[19] can be obtained from those derived here. @ B
J J J
Il. BASIC RESULTS OF THE LIE GROUP ANALYSIS Xs=X—+t—+ vt — (4)
ot Jd B’

Throughout the paper for the complex functiofét,x)
andB(t,x) we write eitherA=z€?, B=/e'® or A=u+iv,
: o J J J J
B=w+is, wherez,{,«,8,u,v,w,s are real quantities that Xe=—t——2Xx—+z—+{—.
depend ort andx. Let us consider the space of the variables at ax. oz "L
(x,m, 7D, 7(?) in which Egs.(1) define the differential
manifold Furthermore, we implemented the procedure of calculation,
preliminarily specifying for the parametér physically rel-
F(x,m 7Y, 7)=0, evant valuehi=1,25. The result shows the existence of two
‘ additional infinitesimal operators only for=1 andh=1:
denoting by x={x'}i-1. the set of independent variables
{t,x} and bym= {7}, _1 » 3 4€ither of the two sets of depen-

i 1 kyk=1,2,3,4 J J { . d
dent variablegz,{,@,8} or {u,v,w,s}; #V={7l1<123 X7=¢ cogB—a)——2z cogB—a)—+ = sin(B—a)—
(2)— 1.k 1k=1,23,4 : - Jz il z da
and7'“)={m}{ =15 "are substituted for the partial deriva-
tives of first and second order, respectively, and z d
F=(F,F5,F3,F,) denotes the left-hand sides of Ed$), + Z S'”(ﬁ_a)%'
expressed in terms of real variables. The infinitesimal crite-
rion under which Eqg1) are invariant in regard to the group P )¢ P
G of point transformations — Qi B ) — — 7 Sin( B— ) —— ) —
Xg=¢ sin(B— a) P zsin(B—a) D cogB—a) Py
ri_ gi N T
x''=f'(x,ma), f|a:0 x, i=1.2 @ . J
—=coyB—a) 5
k= (pk()(,ﬂ',a), ‘Pra:O: mK k=1,2,3,4 ¢ B

mT his is noteworthy in view of the fact that in the region of
negative GVD for both modes arft=1 the systen(1) has
an infinite set of constants of motion and may be solved by
the inverse scattering transforfti4], whereas foth#1 the
p(z)X(F)‘pO:O, 3) system is found to be nonintegrable by inverse scattering.
a From now on in this paper we shall primarily deal with
}he nonintegrable case, but it should be noted that the re-
duced equations apply to arbitrany Nevertheless, one must
remember that the group investigation, presented here, is
P P completely applicable and exhaustive in the framework of
p@X=X+ §:<_R+§:<j —. Lie theory only for those values df for which the widest
am; a1 permissible Lie algebra of the related E¢B. coincides with

(ae ACR, 0eA) consists of a linear homogeneous syste
of equations for the coor_dinatefé(x,n),nk(x,w) of the in-
finitesimal generatoX= ¢&'(x,7)(dldx') + 7(x, ) (9l 97*)

wherep®X denotes the second prolongation of the operato
X with respect to the derivatives*) and #(?),
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TABLE I. Commutators of the basis vectors of Lie algebra.

Xi X, X,  Xs X, Xs Xs
X, 0 0 0 0 XgtvX, —X
X, 0 0 0 0 X1 —2X,
X3 0 0 0 0 0 0
X4 0 0 0 0 0 0
Xs —Xg—vXs —-X, 0 0 0 Xs

the algebra based on the vectd®). The commutators
[Xi,X;] of the basis vector fieldg}) are shown in the Table
I

Using the Lie equation

df . o
T2 E(e) flao=x' i=12

deK

E—Wk(fa(P)' (Pi(azozﬂ-k’ k:1’2’3'4

(F={f%-12, ©={¢"k=1234, We obtain six families of
one-parameter transformatio(® in conformity with the in-
finitesimal operators(4): (i) time translationTal, with

t'=t+a,; (i) space translatiol,,, with X'=x+aj; (iii )
rotation of the phaser, T,,, with a’=a+ajs; (iv) rotation
of the phases, T,,, with 8’ = g+a,, (v) Galilean boost and
simultaneous phase transformation];as, with t'=t
+agx, a'=a+agt+ (ad/2)x, and B'=pB+ vast+v(ad/
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2
as

B'=p+vast+v 5

X+ay,

with a vector-parametea=(a,...,ag).

Generated by the basis vectdds, there exist six adjoint
representations  (interior automorphisms  A;i(g)
(i=1,...,6¢ eR) of the Lie algebrd21,22, acting onX;
according to the Table Il. The general automorphi8nis
given by the composition

A(e1,85,85,86) =A1(e1)°Ay(£2)°As(e5)°Ag(gg), (6)

whereA;(g)°A;(g;)X=Ai(&;) (Aj(g;))X. The main results
obtained in this section, the permissible group of symmetries
G (5) and the group of interior automorphisni®) of the
associated Lie algebra, are applied in the next section to
perform a full classification of one-parameter group-
invariant solutions of Eqe.l).

Ill. OPTIMAL SET OF LIE ALGEBRAS
AND THE CORRESPONDING REDUCED SYSTEMS:
INVARIANT SOLUTIONS

There is an infinite number of subgroups of the general
group of symmetrie$s useful for yielding special exact so-
lutions or classes of exact solutions that are invariant under
at least one of the subgroups. However, a well-known stan-
dard procedur¢21,22 makes it possible to classify all the
invariant solutions in subsets of conjugate solutions. The ad-
joint representationés) introduce a conjugate relation in the
set of all subalgebras of the same dimension. If we take only

2) x; and(vi) heterogeneous scaling of time, space, and ampne representative from each family of equivalent subalge-

plitudesT,, with t' =e~%t, x' =e~?%x, z'=e%z, and{’
=e%/. The most general symmetry gro@of Egs.(1) (in
the nonintegrable case, as indicated abiava six-parameter
transformationT ,, with

t'=e 3t+e %asx+a,, (5)
1 _ A= 28,
x'=e “%x+a,,

z' =e?yz,

{'=e%,

2

5
a'=a+ast+ ?x+a3,

bras, an optimal set of subalgebras is created. For the system
under consideration we built up the optimal set consisting of
one-dimensional not conjugate subalgebras, which we
present in a compact form of six unified cases: case

X1+8X3:%+S£ (e=0,x1);
caseB,
X Xs=Xx Ut (1) (=021
ot Ja B
caseC,

TABLE Il. Interior automorphisms generated by the basis vectors of the Lie algebra.

Ai(e) Xy X2 X3 X4 Xs Xe
Ai(e) X1 X5 X3 Xa Xs—e(X3+vXy) Xgt+eXq
As(e) X3 X, X3 X4 Xs—eX; Xg+2eX,
As(e) Xy X2 X3 Xy Xs X
Ay(e) Xy X2 X3 Xy Xs Xe
2
&
As(e)  Xit+e(Xg+vXy)  XoteXy+ = (Xa+1Xy) X3 Xy Xg Xe—&Xs
Ag(e) e X, e 2%X, Xs Xy e°Xs X
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9 9 9 Case B. The substitutions z=p(x), ¢=q(x),
Xot OXgteXy=- +-—+e B a=f(x)+ t?/2x, and B=g(x) + v (t?/2x) + £(t/x) lead to a
reduced system of equations
(6=0,6=0,x1 or e=*1,0eR); 2xp’ +p=0,
caseD, 2xq’ +9=0,
€)
d 14 J J ' =p2? 2
oXot OXgt Xs=X -8 = Hto—+(o+vt) 7 fF'=p=+ha,
B .2
r— (2 2_ .
(e=+1,5eR); 9 =a e rae:
caseE, Its general solution allows invariant solutions that decay in

amplitude asx increases with a nontrivial dependence of

d 9 9 phase ort andx,
eXz+ OX4+ Xg=— IE—ZX& 97 §—§ — c )
t
3 A= \/71 expi[(C1+hC2)In|x|+§ ,
+5— (¢,0eR); (10

B

B [C
and caseF, =V &Pl

where the real constan®; andC, have the same sign as the
(e=1,6=0 oreeR,6=1). variablex(e =0,+1).
CaseC. The invariant solutions are of the form

(t+ve)?
(C2+hC1)In|X|+ VT )

d
eX3zt oX,=¢ _+5(9,8

By setting various possible values for the parameteand & A=np(t)expilf(t)+ x
one obtains different elements of the optimal set. P(expi{f(t) ! (11
According to the main assertion of the group theory the B=q(t)expi{g(t)+ex}.

invariant solutions are obtained from special reduced sys-

tems of equations that are derived from the original systermifter inserting these expressions into E¢B. we obtain the
of partial differential equations. For this purpose functionallyreduced system

independent quantities that are invariant under the group

transformations are substituted for both independent and de- 2p'f'+pf’=0,
pendent variables. We applied the scheme of reduction to L ,
each one of the subgroups from casé¢o caseE (there are 29'9'+qg"=0, (12)

no invariant solutions for the ca$e) and obtained the opti- " 2 3 _
mal set of reduced systems of ordinary differential equations p"—p(f")?+2p*+2hpf~26p=0,

(7), (9), (12), (22), and (23). Without citing details, we are . 2 3 _ _

going to present the reduced systems and subsequently dis- q"=q(g")*+v2q°+ v2hqp’~v28q=0,

cuss some of their solutions. Throughout this section primg; clearly has a set of solutions of uniform wave trains for

denotes differentiation. (6=0,6=0,+1 ore=+1, §cR)
Case A. After the substitutionsz=p(x), ¢=q(x), ’
a=f(x)+et, andB=g(x) are made Eggl) reduce to A=C, expi{gw/z(czﬁ hCZZ— S)t+ 6x}, 19
p'=9q'=0, B=C, expi{ov2(C2+hC?—¢&)t+ex},
L ) g2 whereo= =1, C;=0, andC,=0, which are similar but not
fr=p“+hag’- o () conjugate to the solution@).

Here we exhibit separately some particular solutions of
(12) for v=1 andv=—1.

v=1. Requiringé=¢, q=p, andg= = f + const, the sys-
The general solution of Eq¢7) readily shows that the in- (€M (12) takes the form
variant solutions of Eqs(l) in this case are uniform wave 26—
trains(C;=0, C,=0, ande=0,+1) P b

g'=q2+hp?.

2

C
82 " 3_ _ l:
A=Cexd C§+hC§—? X+t p"+2(h+1)p3—2ep 7 0

8
(C, is a real constant The solution for this system are knoi-
B=C,exp{(C3+hC3x} : :
26XP(L3 )Xy dal waves with a phase expressed by the third-order
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elliptic integral IT(n;j|m)= fi[1—nsrf(w|m)]~* dw [26].  [2(h—1)(5+1) h+1-25
The explicit form of the solution is 1= h+3 » M= (h—1)(6+1)"
Cy 2 h+1
A=U expi{ ———II(n;j|m)+exy, < 5<——
p[zxﬁbl(”)s] h+1-° 2
v C If m— 1, then Eqs(16) and(17) converge to the correspond-
B=U expi _—lH(n;j|m)+sx , ing normal and symbiotic solitons: for normal solitons
2\h+1b, (h<1),
U= (by—by)cr? (j]m)+ by, (14) A=sech r_m)exp(i <h+21>x),
1 (18
i=2aVh+1t, A=3 Vb;—bs, B=tanhy1—h t)expix),

bi—b, bi—b, and for symbiotic solitonsh(>1),

[ — [ — = -+
M=y "~ b, ' °-OFL NNE 2(h—1) 2x
“Vharz @ Ve YR pg

whereb;>b,>b; are the roots of the polynomial

2 2(h—1
Cs ci B:\/msed(\/(th)t)exp(ix).

_ 3“8 o
QU= 1 2t e

(19

The restrictive conditions foh, as outlined above, are
quite distinctive for each of the previous waves. They closely
correspond to the physical situation and may serve to distin-
guish which of the two phenomena, self-phase or cross-phase
modulation, has a stronger influence on the coupling of the

C, is a real constant, and gitn) denotes the Jacobian co-
sine elliptic function with parametan.

If we assumes=1 and eitherb;=0, b,—0, or b,=0,
b;—0, then we obtain from Eq$14) the soliton solution

modes(compare with16,17,11).
A=B= A /i sech(v2t)exp(ix). (15) An gdditional reciprocal tr_ansformation qf the parameter
h+1 m [26] in Egs.(16) and(17) brings forth solutions expressed
o by the combinationgcn,sn and (sn,cr), some of which are
v=—1. Assumeg’ =f’'=0. After the substitution of the given elsewher§27,28. NPWs(SPWsg and normaksymbi-
ansatzp=C,dn(jt|m), g=C,sn(jt|m) for normal periodic  otic) solitons are possible for=1 andh=1 as well.

waves (NPWs and the ansatz p=Cysn(jt|m), CaseD. The invariant solutions are given by the expres-
g=C,dn(jt|m) for SPWs in Eqs(12) we obtained the fol- gjons

lowing invariant solutions. For NPWpossible forh<1),

3
/ 2¢ _ _ A= p(y)expi[f(y)+stx—%],
A= mdn (]t|m)exp(|5x),

X3

S— B:q(y)expi{g(y)+s(5+vt)x—vg}, (20)

B=Vmia-m+h+1

sn(jt|m)exp(iex),
(16) X2

[ 2e(1-h) e
=Nma=h+htr
m(1-h)+h+1 where the functiong(y), q(y), f(y), andg(y) are solutions

M(1—h)(e+8)=2e—sh—5, e—+1, SeR to the reduced system of equations

. . . : : 2p'f'+pf"=0,
In order to obtain physically admissible solutions for optical
fibers (0<h<1l) one must take e=1 and 6 2q'g’+qg’=0,
e[(h+1)/2,2/(h+1)], while e=—1 is acceptable only for (21)
h<—1. For SPWdexisting only forh>1), p”"—p(f)2+2p3+2hpf—2eyp=0,
2(h+1-26 "—q(g")%+ v293+ v2hqp?— 2eyq— v2e 6q=0
A (h(_l)(h+3>) sr(jt|m)exp(i 5%). q"—0a(g")?+v2g°+ v2hqp’—2eyq—v2e5q
(17 (e==x1, §eR). The first two of these equations may be
. 26+ 1) - . integrated as
B h+3 n(jt[m)exp(ix), p%f'=C,;, g?g’=C, (C,;,C,=cons).
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Considering =1, we assume =0, g=p, and we recast the coupled pair of nonlinear Sclinger equa-
g= *=f+const. Then the last two equations of E¢&l) are  tions (1) as a Hamiltonian system
transformed to 5
a

pw =Dé(H),

C2
p"+2(h+1)p3—2eyp— —3 =0, e=+1.
P with the Hamiltonian functional

CaseE. We complete the optimal set of one-parameter o
group-invariant solutions, presenting here the last invariant H[w]zJ — 3 (|A)>+v|B{» + 5 (|JA]*+|B|*%)
solutions -
2 2
A=Mexpi{f(y)—s In|t|} At
t ' denoting byd(L)={6,(L),8,(L),0,(L),54(L)} the varia-
tional derivative of a functional[7]=/"_ L[ w]dt. Next

(y) . we verify whether any of the groups of point symmetries
B= %expl{g(y)—ﬁ In[t[}, (22) present];yd in Sec. Il ;/re Hamil%onia?n, nalgnely, vale look for
such symmetries that possess characteristic
t2 Q={Qutk-1234 defined by Qu(x,m =)= 7n"(x,m)
Y=< —&(x,m)mk, for which there exists a functional[ 7] sat-
isfying the condition
(e,6eR), which depend on the solutions of the most com- Q=Ds(). (24)

plicated system of reduced equations
Considering the nonintegrable case, we found that Eq.

21 2R F7 27 ’ ’ —
4y“pf"+8y“p'f’ —2y“p’ —4eyp’ —2ypf' +3ep=0, (24) holds for all symmetries except one: the symmetry of
Av2ad+8v2a o — v2v2a — ASva — 2 '+ 35020 scalingTae. Hence Noether’s theorem implies that there ex-
y'ag'+8y°q'g’~v2y"q’'—4dyq’ -~ 2yqg +359=0, ist five independent nontrivial conservation laws, ..., Js

associated with each of the Hamiltonian symmetries

21 2 "2 ’ 2 r_ ’ 2
4y2p" —4y?p(f')%+4eypf’ +2y?pf’ —2yp’ +2hpq Ta - Ta respectively(i) the “momentum” of the solu-

+2p3—¢e?p+2p=0, tion (the asterisk means complex conjugate
4 2 "_4 2 "2 ’ 2 r_ ’ h p2 *
y2q"—4y2q(g’)?+4dyqqg + v2y?qg’ —2yq' +r2hg jl:f (AA* +B,B*)dt,
+ 23— 8%q+2q=0. (23) -

_ _ o o (i) the Hamiltonian of the systeif,="H, (iii) the energy of
Following the previous presentation, it is easy to disjoint theihe first modeZ;=[*..|A|2dt, (iv) the energy of the second
whole set of invariant solution§3), (10), (11), (13)—(20), mode 7,=/”..|B|2dt, and(v) the initial “center of mass”
and (22) into two optimal sets of one-parameter group- of the solutiaor; '
invariant solutions fow=1 andv= —1. Each of these opti-
mal sets comprises all of the invariant solutions, subject to %
the reduced systems of equatid (9), (12), (21), and(23) N f t(|Al?+v[B[?)dt+ixJ; .
for the respectiver. By acting with the maximal group of o
symmetry transformation®), each of the solutions from the 1he conservation of energy in each of the channels has a
optimal set generates a family of conjugate invariant solugjmpie physical meaning: In this system there is only “reac-
tions that depend on six additional parame®ys...as (S8€  (jye interaction of pulses, i.e., interaction connected with a
Appendix A). transfer of phases but without exchange of energy between

the channelgcompare with29]).
IV. CONSERVATION LAWS

Now we apply a version of Noether’s theor¢&i], which V. DISCUSSION

provides a very useful tool for obtaining conservation laws \ve have obtained three types of exact solutions of Egs.
that hold for the Hamiltonian type of SyStemS of equations.(l) (See Appendix A (|) uniform wave tran’]s(Al) and
For that purpose we set={u,v,w,s} and by the use of the (a4) (ii) vanishing waves with a nontrivial simultaneous de-

Hamiltonian matrix pendence of phase drandx (A2), and(iii) different kinds
of periodic waves, including symbiotic onéa5), (A7), and
0 -1 0 O (A8) [and as particular cases soliton solutiqis$), (A9),
1 0 0 0 and(A10)]. Physically more important are typés) and(iii ).
P 2 An interesting circumstance has to be mentioned for Egs.
0o o0 -1 (A2), which we have found for botlv=*1. Note that for

v=1 these solutions were obtained[it9]. Equations(A2)
can be interpreted as a kind of static decaying radiative so-

o O
o
(NI
o
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lution [24]. Recall that the solution of NLSEs for nonsoliton phenomena in such systerf8]. The mathematical conse-
initial conditions transforms into a soliton and small radia-quences from this are the lower dimension algebra of Lie,
tive parts that are usually thought to be a perturbation. Theliimension 4, and correspondingly smaller classes of invari-
amplitude and phase dependencesxoandt of decaying ant solutions and laws of conservation. For example, in this
radiative parts are very similar to those in Eg82). The case the full energy is conserved, but not the individual en-
small differences are due to the fact that E¢s2) are exact ergy of each mode. Therefore, although some exact solutions
solutions, while the form of decaying radiative parts is amay coincide, a direct comparison of both results is not pos-
consequence of a certain asympthotic expansion. As Egsible.
(A2) are exact solutions of Eg€l), it follows that there is no

need for them to be considered as a perturbation.

Concerning different kinds of obtained periodic waves
(and soliton solutions we would like to mention two cir- By means of the Lie group techniqu&1,22 we have
cumstances. First, far=1 we have found an exact solution studied a set of coupled nonlinear Sdfirger equation$l)
(A5), which has the form of periodic waves with a rather describing nonlinear propagation in multimode optical fibers
involved phase dependence brand x given by the third- and fibers with strong birefringence. The most general Lie
order elliptic integral. Its particular case is the set of solitongroup of point symmetries, its Lie algebra, and the corre-
solutions(A6). Second, we have shown th&r v=—1) the  sponding group of adjoint representations have been derived.
symbiotic periodic wave$A8) and solitongA10) are invari-  Based on these, a complete list of group-invariant exact so-
ant solutions of cas€ type. lutions has been obtained. The comparison with earlier re-

Exact solutions of Eqq1) for v=1 have been studied by sults[19,2( reveals that the families of conjugate solutions
the similarity method if19,20. We have done a complete obtained here include the solutions[it9,20 (except one in
examination in order to realize whether the solutions pre{20]) and a large number of others in addition. Therefore, the
sented there belong to any of the families of conjugate incapabilities of the similarity approach used|[it9] and the
variant solutions we have obtained. The basic conclusioiiie group techniqué21,22 are closely related to each other.
from the comparison is that the families of invariant solu- An exact solution of Eqs(1), namely, Eqs(14), and the
tions (A1)—(A3), (Al1l), and (A12) include the solutions corresponding family of invariant solution®5), different
given in[19]. To support this observation we present in thefrom the solutions in[19,20, have been obtained. Note,
Appendk B a list of several special assignments to the grouphowever, that the solutiof25) presented irf20] does not
parameters,...,ag, allowing each of the solutions 9] belong to the invariant solutions obtained here. Further, by
to be obtained from a certain family of invariant solutions for means of Noether's theorem, corresponding to the Hamil-
v=1. Moreover, wider classes of solutions of E¢¥) for  tonian symmetries obtained, conservation laws of Eijs.
v=1 are contained in Appendix A in comparison wjttB],  also have been derived.

VI. CONCLUSION

e.g., the solutiongA5) are not presented il9,20. As was In conclusion, the results obtained here present a group
already mentioned, in addition {d 9,20, we analyze also classification of exact solutions of Eggl). The so-called
the casev=—1. symbiotic periodic and soliton solutions are included in this
Taken from[20], however, the solution classification in a natural way. The exact solutions can be
used for tests in numerical solutions of E¢§) and as trial
A=A\ /i exp [C In|x+b| + hC,In|x+d| functions for application of variational approaf80] in the
X+b ! 2 analysis of different perturbed versions of E¢B. Laws of
{2 conservation also can be used for the analysis of perturbed
+ —+Cs], versions of Eqs(1) and for the stability analysis of exact
2(x+b) (25) solutions(see[29]).
[ Co
B= V15 q &P C, In|x+d|+hCyIn|x+b| ACKNOWLEDGMENTS
t2 The work of I.M.U. was supported by the Deutsche For-
+ m+c4] shungsgemeinschaft, Bonn, Germany, in the framework of
Innovationskolleg “Optische Informations Tech-
(C1,C,.Cs,Ca=const:b,deR) is not among the invariant ZLkS.Sior\l/S.I.P. is indebted to Peter Georgiev for helpful dis-

solutions considered in this paper. Moreover, it is easy to
check the invariance of this solution in regard to a one-

dimensional vector field APPENDIX A
X—i+ t i+ t )\ d Given in its entirety, each of the families of invariant
gt \x+b)da \x+d)aB’ solutions of Egs(1) comprises solutions, that depend on six

arbitrary group parameteis, ,...,a5. In the list below the
which does not belong to the Lie algebra based on the gerfamilies are unified, for brevity, into five specific cases
erators(4). A-E, using for that purpose two additional parametesnd
Finally, let us try to relate the results obtained here withd. By setting various possible values fo@&and 6 one obtains
those of[24]. The additionallin comparison to the system different families of conjugate solutions. Other notations are
(1)] linear coupling in[24] allows one to describe switching C,,C, arbitrary real constants ar ),q( ),f( ),g() real-



57 SOLUTIONS AND LAWS OF CONSERVATION F@® ...

3475

valued functions, which satisfy the respective reduce systemaoidal wave(A5), solitons(A6), NPWs (A7), SPWs(A8),

of equations given in Sec. lII.
For caseA,

A=e?C exp { e%(e+ag)t+ e’

2 2
g“+ag
X C§+hC§—T—sa5 x—e%3sa,
2 2 82+a§ a
X Cl+hC2—T—sa5 —e%a,(e+ag)t+asg,

14
Ci+hCi—-a2

B=e%C,exp [ ve®agt + e?%

5a|x
1%
—e?33,| Ca+hC2— Eaﬁ — va,age®s+ a4] ,
(=0,+1). (A1)
For caseB,
A=+/ €1 il (Ci4hCy)l Jr(t_"’ll)2
= V=g, & (C1+hCy)In|x—ay| 2—ay)
+2a4(C,+hCy)+asy,

(C,+hCp)In|x—ay)

N
B X—ap exp

(t—ay+ vee 3)2
2(x—ay)

+v

+2a5(C2+ hcl)_8a5+ a4

(e=0,+1). (A2)

For caseC,

2
a
A=e%p(t’)exp [ f(t')+e%agt+e?%| 5— ?5) X

1 2a 2 a, 2a
+§e 6a,a;—a,e%ag— de““a,+as |,

as

Bzeaeq(t’)expi[g(t’)+ vea6a5t+e2""6( e=vo|x

Y 2a 2 a 2a,
+ Ee 63235_ Va]_e 6a5_ g€ 6a2+ a4

t' =e%(t—e%*%agx+e?aza,—a;),

(e=0,6=0,=1 ore==*1,6eR). (A3)

Having the form of Eqs(A3), the next seven sets of so-
lutions consist of uniform wave traif®4), a special kind of

normal solitons(A9), and symbiotic solitongA10). For
caseCl1,

A=e%C expi { e¥[as+ o \2(Ci+hCo— o)t

_ eZa6

2
a
0as\2(C2+hCo—8) + — — 6)x

2

+0y2(C2+hC;5— 6) e¥s(ePaza,—a;) — da,e’

1 23, 2 a
+ Ee 6a2a5— a,e“tas+as

B=e%Cexpi { e[ o\/r2(C5+hC2—¢)+ vag]t

ag
2

—e?% —g|X

oas\v2(C3+hCi—¢)+v

+0\r2(C3+hC3—¢) e¥(ePaga,—a;) — £a,e%

Y 2a 2 a
+ Ee sazas_ Va.le 6a5+ a.4

(e=0,6=0,=1 or e==*1,6eR; o==*1). (Ad)

For caseC2, there are three families of invariant solutions,

possible only in one region of GVDv=1), which are writ-
ten for caseC, d=¢:

Cq
A=U expiy ——II(n;j|m)+ ¢—a,aze?+as;,
p[z)\\/mbl(”)@ 145 3}
B=U expi =G TI(n;j|m)+ %+
=U expi{ ———T1I(n;j|m —ajase®+ta,;,
p oAhT1 b, J ¢~ a185 4
U:eaG\/(bl_bz)an(jlm)+b2,
2 2
a a
@=e%ast+e?%| & — ;)x—az e— 75) e,

j=2MVh+1(t—e%asx+a,ase?—a,)e
(e=0,=1), (Ab)

[N\, m, andn are evaluated as in Eq4.4).] For caseC3 there
is a family of invariant solitons of cagg type foré=¢e=1,
which may exist only in one region of GVDvE1):

[ 2 . :
A=¢g? il sechj expi(¢—ajase®+as),
a 2 H H a
B=ege% msechj expi(p—ajase’s+a,),

(A6)
2

2
as
1- ?)x—az

as
@ =e%agt+ e’ 1- ?) e%3,
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j=v2(t—e%agx+a,as;e?—a;)e’.

CasesC4-C7 are valid only for two regions of GVD
(v=-1):

t’ =e(t—easx+e?asa,—a,),

a2 a2
5 5
a' =e%agt—e?®| — — §|x+e?%a, —— o
2 2
—a,e%as+as,
2 2
as as
B’ = —e%ast+e?3 >t x—e?3a, >t
+a,e%ag+ay,.
For caseC4,
A=¢g?% 2—gdn(jt’|m)exp(ia’)
m(1—h)+h+1 ’

2em . .
Bzeaﬁ\/m sn(jt’|m)expiB’) (A7)

(e==1,6eR, h<l).

For caseC5,

_ a [2(h+1-26) -, o,
A=e msrﬂt Imyexpia’),

(A8)
B e 2(5+1)OI . o
=e®\| g dn(it’myexp(ig’)
=1 2 S ! h>1
= ,m< <T, > .
For caseC6,
A=eg% secl{\1—ht')expia’),
B=e% tanh(y1—ht")expig’), (A9)
h+1
(szl,&z—,h<1).
2
For caseC7,
Ac o% [ 2 [2(h—1) , o,
=¢ mtan hrl t' jexplia’),
B e 2 2(h—1) | .
=e \/msec \/ hrl t' lexpiB’)
(A10)

2
e=1,6=——,h>1

X h+1’

[ and m are evaluated as in Eq$l6) and (17), respec-
tively.] For caseD,
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A=e%p(y)expi [ f(y)+ee®3tx— (ga,e??—ag)eet

1
~3 e%x3+ e a,e?% — cag) x>+ | 2ee?¥a,as

2
a
5
—ga,e%— ajet— 7) e?86x — sa,(a,a56%— a,)e3%

1 2,23, a, 1 3.6a
+—a2a5e 6—a1a5e 6+§a26 5+a3

5 , (A11)

B=e?%q(y)expi t g(y) + vee3tx— v(ea,e?— ag)eet

2ee?%6a,as

14
- §e6a6x3+ vets(a,e?—cag)x?+ v

2
a
5
—ga,e%—ase*— - tved e?x— pea,
2
ag_ 3ag__ _ ai 2ag__ ag
X (aj,agze’t—a;)e ed—v 5 |az€ vajase

14
-3 aseb%+ a4} ,
&
y=edt— > e*6x2— (ag— s a,e2%)e?%x + a,a;e°% — a, e

&
- Eage“ae, (e==*1, 6eR).

For casek,

p(y)

A=
t—e%agx+e%asa,—a

expi[f(y)—s In|t— e®agx
1

a a 1 2agn2 1 2a 2
+e%aga,—a,|+e bast — 5 e%agx+ 5 e*%a,a;

—a,e%*ag—eag+as;, (A12)

a(y)

B =
t—e%agx+e%aza,—a

expi[g(y)—élnlt—eaﬁasx
1

a, a, v 2ag42 v 2a 2
+e%agza,—ay|+ve 6a5t—§e sagX + € 6a,as

—va,e%as— dag+ay

_ (t—e%agx+eaas—a;)’
X—ay,

y (e,0eR).

APPENDIX B

Here we give the assignments to the group parameters,
allowing each of the solutions if19] to be obtained from a
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certain family of invariant solutions. For EqEA3) (v=1) For Egs.(A11) (v=1) implying case Il in[19],
implying case | in[19],
Y
a;=a,=0, aj,aueR, v2e%a;=-V, a1=—‘/2—i/, a,=as=0as=In 3cVv2
2 2
a a
2a S — 2a S —
el —+5|=vy,, % —~+e|=y e(y2—
2 ! 2 ? as,a,€R; PRSI

2V

(e=0,8=0,+1 or e=+1,5eR).
For Egs.(A12) (v=1) implying case IV in[19],
For Egs.(A2) (v=1) implying case lla i19],

a;=a,=ag=0, (az,a;eR),

ol \Y
3-5:_5. (e=—2y,, 6=—2y,, x<0).
BT 7017 2%(C NG, For Egs.(A12) (v=1) implying case V in19],
=—@,— +
a,=—@,—2a4(Cy+hCy), a=a,-3:=0, (a3.a5.acR).

— e —
(y2—7y1)€ ev2 (e=—=2vy,, 6=—27y,, x<0).

(x<0,6=0,£1). For Eqgs.(A6) implying the soliton case if19] (p. 276,
For Egs.(Al) (v=1) implying case llb i 19], a,=a,=az=a,=0,
a1=a,=0, az=¢;, a=¢y, V2 vV
(aste)e®o=—y,v2, ase?=—1y,V2 =\ 7 4’ 615:_—\/2.
(e=0,x1). 2( N Z)
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