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Solutions and laws of conservation for coupled nonlinear Schro¨dinger equations:
Lie group analysis
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A set of two coupled nonlinear Schro¨dinger equations is systematically analyzed by means of Lie group
technique. The physical situations under consideration include nonlinear propagation in strongly birefringent
and multimode optical fibers. The most general Lie group of point symmetries, its Lie algebra, and a group of
adjoint representations that correspond to the Lie algebra are identified. As a result, a complete list of group-
invariant exact solutions is obtained and compared with earlier results. The corresponding laws of conservation
are derived employing Noether’s theorem.@S1063-651X~98!10501-9#

PACS number~s!: 03.40.Kf, 02.20.Qs, 03.65.Ge, 42.81.Gs
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I. INTRODUCTION

A set of coupled nonlinear Schro¨dinger equations
~CNSEs! is a basic mathematical model in different branch
of physics. Very often, CNSEs appear in nonlinear fiber
tics @1,2#, where their different versions describe nonline
pulse propagation in, e.g., multimode optical fibers@3#, bire-
fringent fibers@4,5#, couplers@6–8#, four-wave mixing@9–
11#, and Raman scattering@12,13#. The present study focuse
on the CNSEs (n561)

iAx1
1

2
Att1~ uAu21huBu2!A50,

~1!

iBx1
n

2
Btt1~ uBu21huAu2!B50.

They describe a propagation of~a! two waves at different
carrier wavelengths in two-mode optical fibers (h52) @3#

and~b! two modes in fibers with strong birefringence (h5 2
3 )

@2#. In both casesx andt denote the normalized distance a
time. A andB are normalized slowly varying amplitudes o
waves with a different carrier wavelength, or the polarizat
components of the wave. Note that in order to get Eqs.~1! in
the case of strong birefringence, an additional change of
pendent variables has been made@2#, after which the terms
that describe the effect of separation~walk-off effect @2#!
between the two polarization components disappear.n51
(n521) describes the propagation in the region of nega
~positive! group-velocity dispersion~GVD!.
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As it is well known, for h51 and n51 Eqs. ~1! are
integrable by means of the inverse scattering method@14#.
Recently,N-soliton solutions also have been obtained
this integrable case by the Hirota method@15#. For n521
and a large enough cross-phase modulation~CPM! (h.1)
‘‘bright’’ ~‘‘dark’’ ! solitons and the corresponding more ge
eral periodic solutions can exist in the region with positi
~negative! GVD @16,17,11#. The physical effect responsibl
for such possibility is the CPM. Such periodic waves a
solitons are called symbiotic@17,11#. For arbitrary values of
h and n, however, these equations are no longer integra
@18#. Numerical studies of Eqs.~1! have been reviewed in
@1,2#. A systematic investigation of exact solutions of Eq
~1! for n51 has been performed by the similarity method
@19,20#.

At the same time, it is well known that Lie group analys
is one of the feasible ways of providing a possibility f
various exact solutions or classes of exact solutions to
specified. The crucial idea of the Lie group method is ba
on the natural symmetries possessed by any system of pa
differential equations. Using a well-known procedu
@21,22#, a certain number of reduced ordinary different
equations can be obtained. Their solutions constitute an
timal set of group-invariant solutions. This means that a s
cial kind of group classification of one sort of solutions to t
original system of partial differential equations can be ma
The Lie group method was successfully used to produce
act solutions for the higher-order Schro¨dinger equation@23#
as well as for a pair of linearly coupled CNSEs@24#.

The purpose of this paper is to present a Lie grou
classification of one-parameter group-invariant solutions
Eqs. ~1!. The classification obtained and the exact solutio
for n51 are compared with earlier results of@19#. Note how-
ever, that in addition to@19#, we study the propagation o
two waves in different GVD regions, i.e.,n521. This
makes an analysis of the symbiotic periodic waves~SPWs!
and solitons possible.
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In Sec. II we briefly describe the method and simul
neously present our main results obtained from its appl
tion: ~i! the most general Lie group of point symmetries a
its Lie algebra and~ii ! the group of adjoint representations
the Lie algebra.

In Sec. III we proceed with the Lie group classificatio
giving the optimal system of one-dimensional subalgeb
and the corresponding optimal set of reduced systems. T
are six reduced systems~cases A and B! consisting of first-
order differential equations that are readily integrated i
uniform wavetrains~case A! and vanishing waves with non
trivial simultaneous dependence of phase ont and x ~case
B!. The rest of the systems are of second order. Differ
periodic~and in particular cases soliton! solutions, including
the symbiotic ones forn521, are obtained.

In Sec. IV we use Noether’s theorem to obtain conser
tion laws associated with the Hamiltonian symmetries
Eqs. ~1!. In Sec. V we discuss the invariant solutions o
tained. A comparison is also made with the solutions
n51 published in@19,20#. The full forms of the solutions
that compose the families of conjugate solutions are give
Appendix A. Appendix B illustrates how the exact solutio
found in @19# can be obtained from those derived here.

II. BASIC RESULTS OF THE LIE GROUP ANALYSIS

Throughout the paper for the complex functionsA(t,x)
andB(t,x) we write eitherA5zeia, B5zeib or A5u1 iv,
B5w1 is, wherez,z,a,b,u,v,w,s are real quantities tha
depend ont andx. Let us consider the space of the variab
(x,p,p (1),p (2)) in which Eqs. ~1! define the differential
manifold

F~x,p,p~1!,p~2!!50,

denoting byx5$x i% i 51,2 the set of independent variable
$t,x% and byp5$pk%k51,2,3,4either of the two sets of depen
dent variables$z,z,a,b% or $u,v,w,s%; p (1)5$p i

k% i 51,2
k51,2,3,4

andp (2)5$p i , j
k % i , j 51,2

k51,2,3,4are substituted for the partial deriva
tives of first and second order, respectively, a
F5(F1 ,F2 ,F3 ,F4) denotes the left-hand sides of Eqs.~1!,
expressed in terms of real variables. The infinitesimal cr
rion under which Eqs.~1! are invariant in regard to the grou
G of point transformations

x8 i5 f i~x,p,a!, f ua50
i 5x i , i 51,2

~2!

p8k5wk~x,p,a!, w ua50
k 5pk, k51,2,3,4

(aPD,R, 0PD) consists of a linear homogeneous syst
of equations for the coordinatesj i(x,p),hk(x,p) of the in-
finitesimal generatorX5j i(x,p)(]/]x i)1hk(x,p)(]/]pk)

p~2!X~F ! uF5050, ~3!

wherep(2)X denotes the second prolongation of the opera
X with respect to the derivativesp (1) andp (2),

p~2!X5X1z i
k ]

]p i
k 1z i j

k ]

]p i j
k .
-
-
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A sum must be taken over the duplicate indices. The coe
cientsz i

k andz i j
k depend on the functionsj i(x,p),hk(x,p)

and their derivatives@21,22#. For the groupG the system~3!
is the so-called defining system of equations. Its full set
solutions constitutes a Lie algebra that generates the wi
permissible local group of continuous point transformatio
for the system of differential equations under considerati

Since all the variables (x,p,p (1),p (2)) are independent
the defining system is over-determined, which facilitates
solution. However, the great number of 135 equations
quires an essential use of a certain language for mac
computing. By utilizing the package of the computer syst
for symbolic calculationsMATHEMATICA @25#, we have writ-
ten several specific programming modules for solving so
distinctive types of linear partial differential equations wi
constant coefficients. Without having been done any p
assignments toh, by rerunning the modules repeatedly, w
obtained the solution to Eq.~3!: a six-dimensional Lie alge-
bra with the basis of generators

X15
]

]t
, X25

]

]x
, X35

]

]a
, X45

]

]b
,

X55x
]

]t
1t

]

]a
1nt

]

]b
, ~4!

X652t
]

]t
22x

]

]x
1z

]

]z
1z

]

]z
.

Furthermore, we implemented the procedure of calculat
preliminarily specifying for the parameterh physically rel-

evant valuesh51,2,23 . The result shows the existence of tw
additional infinitesimal operators only forn51 andh51:

X75z cos~b2a!
]

]z
2z cos~b2a!

]

]z
1

z

z
sin~b2a!

]

]a

1
z

z
sin~b2a!

]

]b
,

X85z sin~b2a!
]

]z
2z sin~b2a!

]

]z
2

z

z
cos~b2a!

]

]a

2
z

z
cos~b2a!

]

]b
.

This is noteworthy in view of the fact that in the region
negative GVD for both modes andh51 the system~1! has
an infinite set of constants of motion and may be solved
the inverse scattering transform@14#, whereas forhÞ1 the
system is found to be nonintegrable by inverse scattering

From now on in this paper we shall primarily deal wi
the nonintegrable case, but it should be noted that the
duced equations apply to arbitraryh. Nevertheless, one mus
remember that the group investigation, presented here
completely applicable and exhaustive in the framework
Lie theory only for those values ofh for which the widest
permissible Lie algebra of the related Eqs.~1! coincides with
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the algebra based on the vectors~4!. The commutators
@Xi ,Xj # of the basis vector fields~4! are shown in the Table
I.

Using the Lie equation

d fi

da
5j i~ f ,w!, f ua50

i 5x i , i 51,2

dwk

da
5hk~ f ,w!, w ua50

k 5pk, k51,2,3,4

( f 5$ f i% i 51,2, w5$wk%k51,2,3,4), we obtain six families of
one-parameter transformations~2! in conformity with the in-
finitesimal operators~4!: ~i! time translationTa1

, with

t85t1a1 ; ~ii ! space translationTa2
, with x85x1a2 ; ~iii !

rotation of the phasea, Ta3
, with a85a1a3 ; ~iv! rotation

of the phaseb, Ta4
, with b85b1a4 , ~v! Galilean boost and

simultaneous phase transformationsTa5
, with t85t

1a5x, a85a1a5t1 (a5
2/2) x, and b85b1na5t1n (a5

2/
2) x; and~vi! heterogeneous scaling of time, space, and a
plitudesTa6

, with t85e2a6t, x85e22a6x, z85ea6z, andz8

5ea6z. The most general symmetry groupG of Eqs.~1! ~in
the nonintegrable case, as indicated above! is a six-parameter
transformationTa , with

t85e2a6t1e2a6a5x1a1 , ~5!

x85e22a6x1a2 ,

z85ea6z,

z85ea6z,

a85a1a5t1
a5

2

2
x1a3 ,

TABLE I. Commutators of the basis vectors of Lie algebra

Xi X1 X2 X3 X4 X5 X6

X1 0 0 0 0 X31nX4 2X1

X2 0 0 0 0 X1 22X2

X3 0 0 0 0 0 0
X4 0 0 0 0 0 0
X5 2X32nX4 2X1 0 0 0 X5

X6 X1 2X2 0 0 2X5 0
m-

b85b1na5t1n
a5

2

2
x1a4 ,

with a vector-parametera5(a1 ,...,a6).
Generated by the basis vectors~4!, there exist six adjoint

representations ~interior automorphisms! Ai(«)
( i 51, . . . ,6;« PR) of the Lie algebra@21,22#, acting onXj
according to the Table II. The general automorphismA is
given by the composition

A~«1 ,«2 ,«5 ,«6!5A1~«1!+A2~«2!+A5~«5!+A6~«6!, ~6!

whereAi(« i)+Aj (« j )X5Ai(« i) „Aj (« j )…X. The main results
obtained in this section, the permissible group of symmetr
G ~5! and the group of interior automorphisms~6! of the
associated Lie algebra, are applied in the next section
perform a full classification of one-parameter grou
invariant solutions of Eqs.~1!.

III. OPTIMAL SET OF LIE ALGEBRAS
AND THE CORRESPONDING REDUCED SYSTEMS:

INVARIANT SOLUTIONS

There is an infinite number of subgroups of the gene
group of symmetriesG useful for yielding special exact so
lutions or classes of exact solutions that are invariant un
at least one of the subgroups. However, a well-known st
dard procedure@21,22# makes it possible to classify all the
invariant solutions in subsets of conjugate solutions. The
joint representations~6! introduce a conjugate relation in th
set of all subalgebras of the same dimension. If we take o
one representative from each family of equivalent subal
bras, an optimal set of subalgebras is created. For the sys
under consideration we built up the optimal set consisting
one-dimensional not conjugate subalgebras, which
present in a compact form of six unified cases: caseA,

X11«X35
]

]t
1«

]

]a
~«50,61!;

caseB,

«X41X55x
]

]t
1t

]

]a
1~«1nt !

]

]b
~«50,61!;

caseC,
TABLE II. Interior automorphisms generated by the basis vectors of the Lie algebra.

Ai(e) X1 X2 X3 X4 X5 X6

A1(«) X1 X2 X3 X4 X52«(X31nX4) X61«X1

A2(«) X1 X2 X3 X4 X52«X1 X612«X2

A3(«) X1 X2 X3 X4 X5 X6

A4(«) X1 X2 X3 X4 X5 X6

A5(«) X11«(X31nX4) X21«X11
«2

2
~X31nX4! X3 X4 X5 X62«X5

A6(«) e2«X1 e22«X2 X3 X4 e«X5 X6
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X21dX31«X45
]

]x
1d

]

]a
1«

]

]b

~«50, d50,61 or «561,dPR!;

caseD,

«X21dX41X55x
]

]t
1«

]

]x
1t

]

]a
1~d1nt !

]

]b

~«561, dPR!;

caseE,

«X31dX41X652t
]

]t
22x

]

]x
1z

]

]z
1z

]

]z
1«

]

]a

1d
]

]b
~«,dPR!;

and caseF,

«X31dX45«
]

]a
1d

]

]b
~«51, d50 or «PR,d51!.

By setting various possible values for the parameters« andd
one obtains different elements of the optimal set.

According to the main assertion of the group theory
invariant solutions are obtained from special reduced s
tems of equations that are derived from the original sys
of partial differential equations. For this purpose functiona
independent quantities that are invariant under the gr
transformations are substituted for both independent and
pendent variables. We applied the scheme of reduction
each one of the subgroups from caseA to caseE ~there are
no invariant solutions for the caseF! and obtained the opti
mal set of reduced systems of ordinary differential equati
~7!, ~9!, ~12!, ~21!, and ~23!. Without citing details, we are
going to present the reduced systems and subsequently
cuss some of their solutions. Throughout this section pr
denotes differentiation.

Case A. After the substitutionsz5p(x), z5q(x),
a5 f (x)1«t, andb5g(x) are made Eqs.~1! reduce to

p85q850,

f 85p21hq22
«2

2
, ~7!

g85q21hp2.

The general solution of Eqs.~7! readily shows that the in
variant solutions of Eqs.~1! in this case are uniform wav
trains ~C1>0, C2>0, and«50,61!

A5C1expi H S C1
21hC2

22
«2

2 D x1«tJ ,
~8!

B5C2expi $~C2
21hC1

2!x%.
e
s-
m

p
e-
to

s

is-
e

Case B. The substitutions z5p(x), z5q(x),
a5 f (x)1 t2/2x, andb5g(x)1n (t2/2x)1«(t/x) lead to a
reduced system of equations

2xp81p50,

2xq81q50,
~9!

f 85p21hq2,

g85q21hp22n
«2

2x2 .

Its general solution allows invariant solutions that decay
amplitude asx increases with a nontrivial dependence
phase ont andx,

A5AC1

x
exp i H ~C11hC2!lnuxu1

t2

2x J ,
~10!

B5AC2

x
exp i H ~C21hC1!lnuxu1n

~ t1n«!2

2x J ,

where the real constantsC1 andC2 have the same sign as th
variablex(«50,61).

CaseC. The invariant solutions are of the form

A5p~ t !exp i $ f ~ t !1dx%,
~11!

B5q~ t !exp i $g~ t !1«x%.

After inserting these expressions into Eqs.~1! we obtain the
reduced system

2p8 f 81p f950,

2q8g81qg950,
~12!

p92p~ f 8!212p312hpq222dp50,

q92q~g8!21n2q31n2hqp22n2«q50.

It clearly has a set of solutions of uniform wave trains f
~«50, d50,61 or «561, dPR!

A5C1 exp i $sA2~C1
21hC2

22d!t1dx%,
~13!

B5C2 exp i $sAn2~C2
21hC1

22«!t1«x%,

wheres561, C1>0, andC2>0, which are similar but not
conjugate to the solutions~8!.

Here we exhibit separately some particular solutions
~12! for n51 andn521.

n51. Requiringd5«, q5p, andg56 f 1const, the sys-
tem ~12! takes the form

p2f 85C1 ,

p912~h11!p322«p2
C1

2

p3 50

~C1 is a real constant!. The solution for this system are kno
dal waves with a phase expressed by the third-or
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elliptic integral P(n; j um)5*0
j @12nsn2(wum)#21 dw @26#.

The explicit form of the solution is

A5U exp i H C1

2lAh11b1

P~n; j um!1«xJ ,

B5U exp i H 6C1

2lAh11b1

P~n; j um!1«xJ ,

U5A~b12b2!cn2 ~ j um!1b2, ~14!

j 52lAh11t, l5
1

2
Ab12b3,

m5
b12b2

b12b3
, n5

b12b2

b1
, «50,61,

whereb1.b2.b3 are the roots of the polynomial

Q~u!5u32
2«

h11
u22

C2

4~h11!
u1

C1
2

h11
,

C2 is a real constant, and cn(j um) denotes the Jacobian co
sine elliptic function with parameterm.

If we assume«51 and eitherb350, b2→0, or b250,
b3→0, then we obtain from Eqs.~14! the soliton solution

A5B5A 2

h11
sech~&t !exp~ ix !. ~15!

n521. Assumeg85 f 850. After the substitution of the
ansatzp5C1dn(j t um), q5C2sn(j t um) for normal periodic
waves ~NPWs! and the ansatz p5C1sn(j t um),
q5C2dn(j t um) for SPWs in Eqs.~12! we obtained the fol-
lowing invariant solutions. For NPWs~possible forh,1!,

A5A 2«

m~12h!1h11
dn ~ j t um!exp~ idx!,

B5A 2«m

m~12h!1h11
sn~ j t um!exp~ i«x!,

~16!

j 5A 2«~12h!

m~12h!1h11
,

m~12h!~«1d!52«2dh2d, «561, dPR.

In order to obtain physically admissible solutions for optic
fibers (0,h,1) one must take «51 and d
P@(h11)/2 ,2/(h11)#, while «521 is acceptable only for
h,21. For SPWs~existing only forh.1!,

A5A2~h1122d!

~h21!~h13!
sn~ j t um!exp~ idx!,

~17!

B5A2~d11!

h13
dn~ j t um!exp~ ix !,
l

j 5A2~h21!~d11!

h13
, m5

h1122d

~h21!~d11!
,

2

h11
,d,

h11

2
.

If m→1, then Eqs.~16! and~17! converge to the correspond
ing normal and symbiotic solitons: for normal soliton
(h,1),

A5sech~A12ht!expS i
~h11!x

2 D ,
~18!

B5tanh~A12h t!exp~ ix !,

and for symbiotic solitons (h.1),

A5A 2

h11
tanhSA2~h21!

h11
t D expS i

2x

h11D ,
~19!

B5A 2

h11
sechSA2~h21!

h11
t D exp~ ix !.

The restrictive conditions forh, as outlined above, are
quite distinctive for each of the previous waves. They clos
correspond to the physical situation and may serve to dis
guish which of the two phenomena, self-phase or cross-ph
modulation, has a stronger influence on the coupling of
modes~compare with@16,17,11#!.

An additional reciprocal transformation of the parame
m @26# in Eqs.~16! and~17! brings forth solutions expresse
by the combinations~cn,sn! and ~sn,cn!, some of which are
given elsewhere@27,28#. NPWs~SPWs! and normal~symbi-
otic! solitons are possible forn51 andh51 as well.

CaseD. The invariant solutions are given by the expre
sions

A5p~y!exp i H f ~y!1«tx2
x3

3 J ,

B5q~y!exp i H g~y!1«~d1nt !x2n
x3

3 J , ~20!

y5t2«
x2

2
,

where the functionsp(y), q(y), f (y), andg(y) are solutions
to the reduced system of equations

2p8 f 81p f950,

2q8g81qg950,
~21!

p92p~ f 8!212p312hpq222«yp50,

q92q~g8!21n2q31n2hqp222«yq2n2«dq50

(«561, dPR). The first two of these equations may b
integrated as

p2f 85C1 , q2g85C2 ~C1 ,C25const!.
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Considering n51, we assume d50, q5p, and
g56 f 1const. Then the last two equations of Eqs.~21! are
transformed to

p912~h11!p322«yp2
C1

2

p3 50, «561.

CaseE. We complete the optimal set of one-parame
group-invariant solutions, presenting here the last invar
solutions

A5
p~y!

t
exp i $ f ~y!2« lnutu%,

B5
q~y!

t
exp i $g~y!2d lnutu%, ~22!

y5
t2

x

(«,dPR), which depend on the solutions of the most co
plicated system of reduced equations

4y2p f918y2p8 f 822y2p824«yp822yp f813«p50,

4y2qg918y2q8g82n2y2q824dyq822yqg813dq50,

4y2p924y2p~ f 8!214«yp f812y2p f822yp812hpq2

12p32«2p12p50,

4y2q924y2q~g8!214dyqg81n2y2qg822yq81n2hqp2

1n2q32d2q12q50. ~23!

Following the previous presentation, it is easy to disjoint
whole set of invariant solutions~8!, ~10!, ~11!, ~13!–~20!,
and ~22! into two optimal sets of one-parameter grou
invariant solutions forn51 andn521. Each of these opti-
mal sets comprises all of the invariant solutions, subjec
the reduced systems of equations~7!, ~9!, ~12!, ~21!, and~23!
for the respectiven. By acting with the maximal group o
symmetry transformations~5!, each of the solutions from th
optimal set generates a family of conjugate invariant so
tions that depend on six additional parametersa1 ,...,a6 ~see
Appendix A!.

IV. CONSERVATION LAWS

Now we apply a version of Noether’s theorem@21#, which
provides a very useful tool for obtaining conservation la
that hold for the Hamiltonian type of systems of equatio
For that purpose we setp5$u,v,w,s% and by the use of the
Hamiltonian matrix

D5S 0 2 1
2 0 0

1
2 0 0 0

0 0 0 2 1
2

0 0 1
2 0

D

r
nt

-

e

o

-

s
.

we recast the coupled pair of nonlinear Schro¨dinger equa-
tions ~1! as a Hamiltonian system

]p

]x
5Dd~H!,

with the Hamiltonian functional

H@p#5E
2`

`

@2 1
2 ~ uAtu21nuBtu2!1 1

2 ~ uAu41uBu4!

1huAu2uBu2#dt,

denoting byd(L)5$du(L),dv(L),dw(L),ds(L)% the varia-
tional derivative of a functionalL@p#5*2`

` L@p#dt. Next
we verify whether any of the groups of point symmetri
presented in Sec. II are Hamiltonian, namely, we look
such symmetries that possess characteri
Q5$Qk%k51,2,3,4, defined by Qk(x,p,p (1))5hk(x,p)
2j i(x,p)p i

k , for which there exists a functionalJ@p# sat-
isfying the condition

Q5Dd~J!. ~24!

Considering the nonintegrable case, we found that
~24! holds for all symmetries except one: the symmetry
scalingTa6

. Hence Noether’s theorem implies that there e

ist five independent nontrivial conservation lawsJ1 ,...,J5
associated with each of the Hamiltonian symmetr
Ta1

,...,Ta5
, respectively:~i! the ‘‘momentum’’ of the solu-

tion ~the asterisk means complex conjugate!

J15E
2`

`

~AtA* 1BtB* !dt,

~ii ! the Hamiltonian of the systemJ2[H, ~iii ! the energy of
the first modeJ35*2`

` uAu2dt, ~iv! the energy of the secon
modeJ45*2`

` uBu2dt, and ~v! the initial ‘‘center of mass’’
of the solution

J55E
2`

`

t~ uAu21nuBu2!dt1 ixJ1 .

The conservation of energy in each of the channels ha
simple physical meaning: In this system there is only ‘‘rea
tive’’ interaction of pulses, i.e., interaction connected with
transfer of phases but without exchange of energy betw
the channels~compare with@29#!.

V. DISCUSSION

We have obtained three types of exact solutions of E
~1! ~see Appendix A!: ~i! uniform wave trains~A1! and
~A4! ~ii ! vanishing waves with a nontrivial simultaneous d
pendence of phase ont andx ~A2!, and~iii ! different kinds
of periodic waves, including symbiotic ones~A5!, ~A7!, and
~A8! @and as particular cases soliton solutions~A6!, ~A9!,
and~A10!#. Physically more important are types~ii ! and~iii !.
An interesting circumstance has to be mentioned for E
~A2!, which we have found for bothn561. Note that for
n51 these solutions were obtained in@19#. Equations~A2!
can be interpreted as a kind of static decaying radiative
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lution @24#. Recall that the solution of NLSEs for nonsolito
initial conditions transforms into a soliton and small rad
tive parts that are usually thought to be a perturbation. T
amplitude and phase dependences onx and t of decaying
radiative parts are very similar to those in Eqs.~A2!. The
small differences are due to the fact that Eqs.~A2! are exact
solutions, while the form of decaying radiative parts is
consequence of a certain asympthotic expansion. As
~A2! are exact solutions of Eqs.~1!, it follows that there is no
need for them to be considered as a perturbation.

Concerning different kinds of obtained periodic wav
~and soliton solutions!, we would like to mention two cir-
cumstances. First, forn51 we have found an exact solutio
~A5!, which has the form of periodic waves with a rath
involved phase dependence ont and x given by the third-
order elliptic integral. Its particular case is the set of solit
solutions~A6!. Second, we have shown that~for n521! the
symbiotic periodic waves~A8! and solitons~A10! are invari-
ant solutions of caseC type.

Exact solutions of Eqs.~1! for n51 have been studied b
the similarity method in@19,20#. We have done a complet
examination in order to realize whether the solutions p
sented there belong to any of the families of conjugate
variant solutions we have obtained. The basic conclus
from the comparison is that the families of invariant so
tions ~A1!–~A3!, ~A11!, and ~A12! include the solutions
given in @19#. To support this observation we present in t
Appendix B a list of several special assignments to the gro
parametersa1 ,...,a6 , allowing each of the solutions in@19#
to be obtained from a certain family of invariant solutions f
n51. Moreover, wider classes of solutions of Eqs.~1! for
n51 are contained in Appendix A in comparison with@19#,
e.g., the solutions~A5! are not presented in@19,20#. As was
already mentioned, in addition to@19,20#, we analyze also
the casen521.

Taken from@20#, however, the solution

A5A C1

x1b
expi H C1lnux1bu1hC2lnux1du

1
t2

2~x1b!
1C3J ,

~25!

B5A C2

x1d
expi H C2 lnux1du1hC1lnux1bu

1
t2

2~x1d!
1C4J

~C1 ,C2 ,C3 ,C45const;b,dPR! is not among the invarian
solutions considered in this paper. Moreover, it is easy
check the invariance of this solution in regard to a on
dimensional vector field

X5
]

]t
1S t

x1bD ]

]a
1S t

x1dD ]

]b
,

which does not belong to the Lie algebra based on the g
erators~4!.

Finally, let us try to relate the results obtained here w
those of@24#. The additional@in comparison to the system
~1!# linear coupling in@24# allows one to describe switchin
-
e

s.

-
-
n

-

p

o
-

n-

phenomena in such systems@6#. The mathematical conse
quences from this are the lower dimension algebra of L
dimension 4, and correspondingly smaller classes of inv
ant solutions and laws of conservation. For example, in
case the full energy is conserved, but not the individual
ergy of each mode. Therefore, although some exact solut
may coincide, a direct comparison of both results is not p
sible.

VI. CONCLUSION

By means of the Lie group technique@21,22# we have
studied a set of coupled nonlinear Schro¨dinger equations~1!
describing nonlinear propagation in multimode optical fibe
and fibers with strong birefringence. The most general
group of point symmetries, its Lie algebra, and the cor
sponding group of adjoint representations have been deri
Based on these, a complete list of group-invariant exact
lutions has been obtained. The comparison with earlier
sults @19,20# reveals that the families of conjugate solutio
obtained here include the solutions in@19,20# ~except one in
@20#! and a large number of others in addition. Therefore,
capabilities of the similarity approach used in@19# and the
Lie group technique@21,22# are closely related to each othe

An exact solution of Eqs.~1!, namely, Eqs.~14!, and the
corresponding family of invariant solutions~A5!, different
from the solutions in@19,20#, have been obtained. Note
however, that the solution~25! presented in@20# does not
belong to the invariant solutions obtained here. Further,
means of Noether’s theorem, corresponding to the Ham
tonian symmetries obtained, conservation laws of Eqs.~1!
also have been derived.

In conclusion, the results obtained here present a gr
classification of exact solutions of Eqs.~1!. The so-called
symbiotic periodic and soliton solutions are included in th
classification in a natural way. The exact solutions can
used for tests in numerical solutions of Eqs.~1! and as trial
functions for application of variational approach@30# in the
analysis of different perturbed versions of Eqs.~1!. Laws of
conservation also can be used for the analysis of pertur
versions of Eqs.~1! and for the stability analysis of exac
solutions~see@29#!.
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APPENDIX A

Given in its entirety, each of the families of invarian
solutions of Eqs.~1! comprises solutions, that depend on s
arbitrary group parametersa1 ,...,a6 . In the list below the
families are unified, for brevity, into five specific cas
A–E, using for that purpose two additional parameters« and
d. By setting various possible values for« andd one obtains
different families of conjugate solutions. Other notations a
C1 ,C2 arbitrary real constants andp( ),q( ), f ( ),g( ) real-



em

-

s,

57 3475SOLUTIONS AND LAWS OF CONSERVATION FOR . . .
valued functions, which satisfy the respective reduce syst
of equations given in Sec. III.

For caseA,

A5ea6C1expi H ea6~«1a5!t1e2a6

3S C1
21hC2

22
«21a5

2

2
2«a5D x2e2a6a2

3S C1
21hC2

22
«21a5

2

2
2«a5D 2ea6a1~«1a5!1a3J ,

B5ea6C2expi H nea6a5t1e2a6S C2
21hC1

22
n

2
a5

2D x

2e2a6a2S C2
21hC1

22
n

2
a5

2D2na1a5ea61a4J ,

~«50,61!. ~A1!

For caseB,

A5A C1

x2a2
expi H ~C11hC2!lnux2a2u1

~ t2a1!2

2~x2a2!

12a6~C11hC2!1a3J ,

B5A C2

x2a2
expi H ~C21hC1!lnux2a2u

1n
~ t2a11n«e2a6!2

2~x2a2!

12a6~C21hC1!2«a51a4J
~«50,61!. ~A2!

For caseC,

A5ea6p~ t8!expi H f ~ t8!1ea6a5t1e2a6S d2
a5

2

2 D x

1
1

2
e2a6a2a5

22a1ea6a52de2a6a21a3J ,

B5ea6q~ t8!exp i H g~ t8!1nea6a5t1e2a6S «2n
a5

2

2 D x

1
n

2
e2a6a2a5

22na1ea6a52«e2a6a21a4J ,

t85ea6~ t2ea6a5x1ea6a5a22a1!,

~«50, d50,61 or «561, dPR!. ~A3!

Having the form of Eqs.~A3!, the next seven sets of so
lutions consist of uniform wave trains~A4!, a special kind of
sknoidal wave~A5!, solitons~A6!, NPWs~A7!, SPWs~A8!,
normal solitons~A9!, and symbiotic solitons~A10!. For
caseC1,

A5ea6C1exp i H ea6@a51sA2~C1
21hC2

22d!#t

2e2a6S sa5A2~C1
21hC2

22d!1
a5

2

2
2d D x

1sA2~C1
21hC2

22d! ea6~ea6a5a22a1!2da2e2a6

1
1

2
e2a6a2a5

22a1ea6a51a3J ,

B5ea6C2exp i H ea6@sAn2~C2
21hC1

22«!1na5#t

2e2a6S sa5An2~C2
21hC1

22«!1n
a5

2

2
2« D x

1sAn2~C2
21hC1

22«! ea6~ea6a5a22a1!2«a2e2a6

1
n

2
e2a6a2a5

22na1ea6a51a4J
~«50, d50,61 or «561, dPR; s561!. ~A4!

For caseC2, there are three families of invariant solution
possible only in one region of GVD (n51), which are writ-
ten for caseC, d5«:

A5U exp i H C1

2lAh11 b1

P~n; j um!1w2a1a5ea61a3J ,

B5U exp i H 6C1

2lAh11 b1

P~n; j um!1w2a1a5ea61a4J ,

U5ea6A~b12b2!cn2~ j um!1b2,

w5ea6a5t1e2a6S «2
a5

2

2 D x2a2S «2
a5

2

2 De2a6,

j 52lAh11~ t2ea6a5x1a2a5ea62a1!ea6

~«50,61!, ~A5!

@l, m, andn are evaluated as in Eqs.~14!.# For caseC3 there
is a family of invariant solitons of caseC type for d5«51,
which may exist only in one region of GVD (n51):

A5ea6A 2

h11
sechj exp i ~w2a1a5ea61a3!,

B5ea6A 2

h11
sechj exp i ~w2a1a5ea61a4!,

~A6!

w5ea6a5t1e2a6S 12
a5

2

2 D x2a2S 12
a5

2

2 De2a6,
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j 5&~ t2ea6a5x1a2a5ea62a1!ea6.

CasesC4 –C7 are valid only for two regions of GVD
(n521):

t85ea6~ t2ea6a5x1ea6a5a22a1!,

a85ea6a5t2e2a6S a5
2

2
2d D x1e2a6a2S a5

2

2
2d D

2a1ea6a51a3 ,

b852ea6a5t1e2a6S a5
2

2
1« D x2e2a6a2S a5

2

2
1« D

1a1ea6a51a4 .

For caseC4,

A5ea6A 2«

m~12h!1h11
dn~ j t 8um!exp~ ia8!,

B5ea6A 2«m

m~12h!1h11
sn~ j t 8um!exp~ ib8! ~A7!

~«561, dPR, h,1!.

For caseC5,

A5ea6A2~h1122d!

~h21!~h13!
sn~ j t 8um!exp~ ia8!,

~A8!

B5ea6A2~d11!

h13
dn~ j t 8um!exp~ ib8!

S «51,
2

h11
,d,

h11

2
, h.1D .

For caseC6,

A5ea6 sech~A12ht8!exp~ ia8!,

B5ea6 tanh~A12ht8!exp~ ib8!, ~A9!

S «51, d5
h11

2
, h,1D .

For caseC7,

A5ea6A 2

h11
tanhSA2~h21!

h11
t8D exp~ ia8!,

B5ea6A 2

h11
sechSA2~h21!

h11
t8D exp~ ib8!

~A10!

3S «51, d5
2

h11
, h.1D .

@j and m are evaluated as in Eqs.~16! and ~17!, respec-
tively.# For caseD,
A5ea6p~y!exp i H f ~y!1«e3a6tx2~«a2e2a62a5!ea6t

2
1

3
e6a6x31e4a6~a2e2a62«a5!x21S 2«e2a6a2a5

2«a1ea62a2
2e4a62

a5
2

2 De2a6x2«a2~a2a5ea62a1!e3a6

1
1

2
a2a5

2e2a62a1a5ea61
1

3
a2

3e6a61a3J , ~A11!

B5ea6q~y!exp i H g~y!1n«e3a6tx2n~«a2e2a62a5!ea6t

2
n

3
e6a6x31ne4a6~a2e2a62«a5!x21nS 2«e2a6a2a5

2«a1ea62a2
2e4a62

a5
2

2
1n«d De2a6x2n«a2

3~a2a5ea62a1!e3a62S «d2n
a5

2

2 Da2e2a62na1a5ea6

2
n

3
a2

3e6a61a4J ,

y5ea6t2
«

2
e4a6x22~a52«a2e2a6!e2a6x1a2a5e2a62a1ea6

2
«

2
a2

2e4a6, ~«561, dPR!.

For caseE,

A5
p~y!

t2ea6a5x1ea6a5a22a1
exp i H f ~y!2« lnut2ea6a5x

1ea6a5a22a1u1ea6a5t2
1

2
e2a6a5

2x1
1

2
e2a6a2a5

2

2a1ea6a52«a61a3J , ~A12!

B5
q~y!

t2ea6a5x1ea6a5a22a1
exp i H g~y!2d lnut2ea6a5x

1ea6a5a22a1u1nea6a5t2
n

2
e2a6a5

2x1
n

2
e2a6a2a5

2

2na1ea6a52da61a4J ,

y5
~ t2ea6a5x1ea6a2a52a1!2

x2a2
~«,dPR!.

APPENDIX B

Here we give the assignments to the group paramet
allowing each of the solutions in@19# to be obtained from a
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certain family of invariant solutions. For Eqs.~A3! (n51)
implying case I in@19#,

a15a250, a3 ,a4PR, &ea6a552V,

e2a6S a5
2

2
1d D 5g1 , e2a6S a5

2

2
1« D 5g2

~«50, d50,61 or «561, dPR!.

For Eqs.~A2! (n51) implying case IIa in@19#,

a152
g1

&
, a25a550,

a352w122a6~C11hC2!,

a452w222a6~C21hC1!,

~g22g1!ea65«&

~x,0, «50,61!.

For Eqs.~A1! (n51) implying case IIb in@19#,

a15a250, a35w1 , a45w2 ,

~a51«!ea652g1&, a5ea652g2&

~«50,61!.
c-

n

k,

,

For Eqs.~A11! (n51) implying case III in@19#,

a152
g1

&V
, a25a550,a65 ln A3 «V&

S a3 ,a4PR; d5
«~g22g1!

A3 2V2
, «561D .

For Eqs.~A12! (n51) implying case IV in@19#,

a15a25a650, ~a3 ,a4PR!,

a552
V

&
, ~«522g1 , d522g2 , x,0!.

For Eqs.~A12! (n51) implying case V in@19#,

a15a25a550, ~a3 ,a4 ,a6PR!,

~«522g1 , d522g2 , x,0!.

For Eqs.~A6! implying the soliton case in@19# ~p. 276!,

a15a25a35a450,

ea65Ag12
V2

4
, a552

V

A2S g12
V2

4
D

.
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